Using CERES and Energy Budget
Observations to Develop and Assess a
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Outline/Motivation

(And you may ask yourself. Where does that highway go to?)

* Understand forcing and feedbacks in CESM?2

* Forcing is a balance between aerosol forcing and
GHG forcing F=Fg s+ F

 Feedbacks: response of the system

dero

* Formally:
R=F-AdT,+dH
R= TOA imbalance, F=Forcing, A= feedback parameter

H= Ocean Heat content, T, = surface temperature
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Feedback parameter (W m?C™)
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Temperature Anomaly (°C)

How did we get here?
R—F-AdT.+dH

(a) Observed and CMIP5 simulated global mean surface air temperature
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Moc els reproduce OBSERVED temperature trends

Note: secret hiding in plain sight....



Forcing Uncertainty

Adjusted Forcing in 2003 vs. Equilibrium Climate Sensitivity (K)
3.0

N
(6}
> o>
.

. . CMIP5: R2 = 0.1941
¢ CMIP5 selection: R2 = 0.7369

CM’IP3 (Knutti):R2 = 0.2414

A A

>

NS
o
O

—
O3]

me

—

e —
2

Kiehl: R2 = 0.5027

Adjusted Forcing (Wm™)

1.8 2.3 2.8 3.3 3.8 4.3 4.8 5.3
Equilibrium Climate Sensitivity (K)

Forster et al 2013, Figure 7
Models that reproduce 20t Century Updated from Kiehl et al 2007



Forcing and Feedback

R=F-AdT.+dH
dT,=(F-R+dH)/ A
dT, = (Fg +F.eo ~ R+dH)/ A

* Implication is that R (TOA imbalance) is critical
for understanding

e |ssues with all these terms, so hard to use this
to constrain A.



You may find yourself in a beautiful house

CESM1: The “Least Bad Model of Them All”
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CESM2: Major Improvements

(New Slogan in Development)

 Reduced biases in many parts of the system
* Land Ice model (Greenland)

* Land model enables more impacts research
e Better hydrologic cycle*

* High Resolution/Regional Climate Capability
* Hierarchy of simplified models

* Physical foundations for a scale-insensitive (scale
aware) model

* What specifically did we do?

*Under the rocks and stones. There is water underground.



And you may say to yourself
My God! What have | done?

 QOcean (POP2)
— Improved mixing parameterizations
— Estuary Model
— Hourly coupling to atmosphere
* Sealce (CICE5)*
— New thermodynamics (prognostic salinity, mushy layer)
— Melt ponds
— Bio-geochemistry
— Improved Melt Water
 Land (CLM5): Improvements for impacts research
— River routing model, Crop Model, Improved snow model.
— Improved Carbon cycle (with N limitation)
— Ecosystem Demography (biome boundaries, dynamic land use).

 Land Ice (CISM)

— Greenland surface mass balance
— Integrated with Snow and Land Model

* There is water, at the bottom of the ocean. Under the water, carry the water.



CESM2: The CAM Family

This is not my beautiful house!

Model CAM3 CAM4 CAMS5 CAMé6
CCSM3 CCSM4 CESMI.0-1.2 CESM2
Release Jun 2004 Apr 2010 Jun 2010 Mid 2017

Microphysics

Rasch-Kristjansson (1998)

Rasch-Kristjansson (1998)

Morrison-Gettelman (2008)

Gettelman-Morrison (2015) MG2

Deep
Convection

Zhang-McFarlane (1995)

ZM, Neale et al. (2008)

ZM, Neale et al. (2008)

ZM, Neale et al. (2008,2017)

PBL

Holtslag-Boville (1993)

Holtslag-Boville (1993)

Bretherton et al (2009)

Shallow
Convection

Hack (1994)

Hack (1994)

Park et al. (2009)

Macrophysics

Rasch-Kristjansson (1998)

Rasch-Kristjansson (1998)

Park et al. (201 1)

CLUBB: Bogenschutz et al 2013

Radiation Collins et al. (2001) Collins et al. (2001) lacono et al. (2008) lacono et al. (2008)
A | Bulk A | Model Bulk A | Model BAM 3 Mode Aerosol Model 4 MODE Modal Aerosol Model
erosols eros e eros e
i Aeroset o i Aeroset o Ghan et al. (2011) Ghan et al. (201 1)
] Finite Volume/
Dynamics Spectral Finite Volume Finite Volume

Spectral Element (High Res)

= New parameterization/dynamics




And you may ask yourself
Am | right or am | wrong?

(Model Evaluation)

* New Ice Nucleation & Mixed phase cloud
microphysics has significantly reduced ASR

bias in S. Ocean

* Arctic clouds have a lot more Liquid Water:
Improves surface radiation balance.

* Tropical cloud biases reduced, Stratocumulus
improved.



SWCRE

CESM2a0.: Results (Global)

EBAF4: “Same as it ever was” (with a few key changes)
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SW Cloud Biases (v. EBAF4)

Same as it ever was

SWCRE CAM®6 Diff [Wm 2] SWCRE CAMS5 Diff [Wm 2]

-40 -25 -15 -5 10 20 30 —40 -25 —15 —5 10 20 30
Wm-2 Wm-2



LW Cloud Biases (v. EBAF4)

Same as it ever was

LWCRE CAM6 lef [Wm 2] LWCRE CAM5 lef [Wm 2]

I |
-40 -25 -15 -5 10 20 30 40 -25 -15 -5 10 20 30
Wm-2 Wm-2

LWCRE RMSE v. EBAF4.0 =5.38
LWCRE RMSE v. EBAF2.0 = 4.99

Note: RMSE actually larger v. EBAF4 than EBAF2.8



LW Biases (v. EBAF4)

Y
-------------

----------------

LW ALL Up

RMSE larger for LW clear than LW all
This may not be a cloud problem, but
a (related) bias in water vapor.

(Remove the water,
Carry the water) LW CIr Up

1 1 1 1 ;
—-20.0-12.5 -7.5 =25 5.0 10.0 15.0

Wm-2



Albedo v. CERES (EBAF2.8)

Much Better...High Latitude differences Remain

mean = 0.01 rmse = 0.03 dimensionless

Min = 0.16 Max =

v. CESM20. (CAM6) |

mecn = —0.01 rmse = 0.05 dimensionless

v. CESM1 (CAM5)




- (And you may find yourself
In another part of the world)




Arctic Sfc Radiation budget (DJF)

CAM®6 - ISCCP FD CAMS5 - ISCCP FD

Still big biases (though observations have bias too), but improved




Arctic Clouds/Radiation Budget

(Remove the water, at the bottom of the ocean)

* Know some things are better.
— LWP: there is some.

* TOA fluxes (SW, LW)

* Clouds: may be missing things from Obs

— Best is CloudSat + CALIOP. But issues with
attenuation and surface clutter (lowest km)



Why? Arctic Cloud Water

ARM Barrow, AK Site
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Forcing and Feedback Methods

And you may ask yourself, how do | work this?

* Feedbacks: Radiative Kernels

— Apply to Slab Ocean Model (SOM) & SST +4K
simulations

— CESM1 (CAM5)
— CESM1.5 (Interim version)
— CESM20. (CAM6)

* Forcing: Aerosol Forcing (total and indirect)
— Indirect = Aerosol Cloud Interactions (ACl)
— Use off line calculations

— ‘Clean Sky’ aerosol forcing (Ghan et al 2013). Slightly
higher than ACRE



Feedback (Wm2 K1)

-0.5

Feedback Summary

(Same as it ever was) From SOM Simulations

B CESM1

1.5

B CESM1.5

B CESM2

0.5

Albedo Q Q+LR LW Cloud SW Cloud Tot Cld

Bottom Line for Equilibrium Climate Sensitvity (ECS)
CESM1 = 4.0K CESM1.5=3.8K CESM2 = 4.0K



Surface Albedo Feedback

(Same as it ever was)

SW Surf Albedo Feedback
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PW K-1 deg-1

Cloud Feedback (Zonal Mean)

(Same as it ever was)

A) Adj SW Cloud Feedback
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Aerosol Forcing

Run a model twice with different aerosol emissions (all else the same)

(Letting the days go by)

A) 2000-1850 AAEROD B) 2000-1850 ATOA

12.50
10.00
7.500
5000
2.500 &
2502
-5.00
-7.50
-10.0
125

CAM60. ATOA (125 series’) =-1.6 Wm™2
ACl -1.4Wm~2, Direct effects -0.2Wm™

Updated from Gettelman et al 2010



Aerosol
(CCN
Number)

Activation I (

Process rates: Essence

Key loss processes in bulk schemes are heavily parameterized
Goal is to represent stochastic collection process in ‘pieces’

Ade Nc

Cloud Droplets \
(Prognostic)

5

Autoconversion

Au = f(qcl NC_X)

A A 4

|

Accretion

A.=f(a,q.)

A

Sedimentation

qr Nr
Rain

1. Activation (ON_/ACCN) = f(RH,w)
Formation of cloud drops

2. Autoconversion (dP/AN_) Rain
Formation (empirical)

3. Accretion (0L/dP): collection of
cloud by rain (empirical)

Ac & Au represent the stochastic collection
process (explicit with bin schemes)

CAMG6 (CESM2) adds prognostic rain:

A. Better representation of q,

B. Increasein A_/ A,

C. Reduced ACI (reduced N_effect)

Also change autoconversion (add hysteresis)



Uncertainty in Cloud Microphysics

Emissions #
Vapor | \fixed Phase
Deposition !

OP/ON, Autoconv #

Shallow Cu Regimes #

dP/dL Prog Precip

ON_/OCCN Activation e
-20 0

-40 20 40

Ermissions sensitivity: -30% to +30% (Similar to Carslaw et al 2013)
Cloud microphysics: -30% to +60%: due to Autoconversion, Mixed
Phase, Regimes, Precipitation treatment

Gettelman 2015, ACP



Modifying Process Rates Using Observations
Liquid Water Path (LWP) v. Process rates

B; LWP v. Autoconversion (Au)
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Gettelman, 2015, ACP Results: Changed Autoconversion in CAM6, MG2
Data from VOCALS (from KK2000 to SB2001)

(Terai & Wood 2013)
Still other processes to look at....



And you may ask yourself: Am | right or am | wrong?
Comparisons with Observations

Holuhraun Eruption in Iceland, October 2014 - Climatology
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Anomalies (°C)

20t Century Global T, Anomalies
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Anomalies (°C)

20t Century Global T, Anomalies

Temperature anomalies from 1850-1899 average

Where does that highway go to?
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The road not taken
“This is not my beautiful house”

 Removing liquid supersaturation from CLUBB
was done with an ‘alternative’ cloud scheme

— This resulted in higher sensitivity
* Also, relative variance was left in with SB2001
— This configuration was not appropriate for SB2001

 Produced a reasonable 1850 climate, but...



PW K-1 deg-1

3.0

Same as it Never was.. ..

Evolution of Cloud Feedback

A) Adj SW Cloud Feedback

e—CESM125+4K
------- LigSS+4K
N\ ReLvARsaK

ESM119+4K

PW K-1 deg-1

Latitude

Current CESM2 (125)

SST+4K Experiments (Fixed SSTs)

3.0 —

B) Adj LW Cloud Feedback

,,
PW K-1 deg-1

Latitude

Add Liguid Supersaturation (LigSS) subtropical increase
Add back Relative Variance (RELVAR) extra tropical increase
CESM1.5 (119): ‘High’ Sensitivity
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C) Adj Cloud Feedback

Latitude
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Models are equally skillful

And you may ask yourself
Am | right? Am | wrong?
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Summary: How did | get here?

CESM2 Atmosphere (CAM®6) is much improved (a beautiful house!)
— Thanks to observations
— Arctic is still an open question, many biases, not sure of observations
Climate Feedbacks in CESM2 similar to CESM1 (Same as it ever was)
— Water vapor, albedo, clouds
— Equilibrium climate sensitivity (ECS) CESM2 = 3.9K (CESM1=4K)
Aerosol Forcing: Increased, then reduced (Same as it ever was)
— Added new regimes (shallow convection)
— Adjusted cloud microphysics
— Hard to compare to observations
High sensitivity configuration ‘equally probable’ (not my beautiful house)
— Will analyze and investigate further
Note: the 20t century is potentially a constraint (Letting the days go by)
— We might have changed the model if it was not acceptable

Heat budget analysis (Trenberth) indicates CESM2 has a lower ‘H’ (Ocean
Heat Uptake) than observed. Also lower R (TOA imbalance).

— Forcing is too weak? (you may find yourself living in a shotgun shack)



Thanks!

* CESM Team
* David Byrne, Brian Eno...
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